Forging Partnerships in the Management of Hepatocellular Carcinoma: Multidisciplinary Strategies to Provide Continuity of Care

CLINICAL CARE OPTIONS ONCOLOGY

Malignant Transformation Multistep

HCC^[2]

Epigenetic alterations Genetic alterations

Dysplastic nodules^[1]

Liver cirrhosis

Hepatitis C				
Hepatitis B	Potential Targets			
Ethanol NASH	Oxidative stress and inflammation	Viral oncogenes	Carcinogens	
Normal liver	Growth factors	Telomere shortening	Cancer stem cells	
	Loss of cell cycle checkpoints	Antiapoptosis	Angiogenesis	

1. Tornillo L, et al. Lab Invest. 2002;82:547-553.

2. Verslype C, et al. AASLD 2007. Abstract 24.

clinicaloptions.com/oncology

Etiology of HCC Distinct Geographic Distribution

	Europe ar State	nd United s (%)	Japa	an (%)	Asia and	Africa (%)
Risk Factors	Estimate	Range	Estimate	e Range	Estimate	Range
Hepatitis B virus	22	4~-58	20	18~-44	60	40~90
Hepatitis C virus	60	12~72	63	48~94	20	9~56
Alcohol	45	8~57	20	15~33		11~41
Tobacco	12	0~14	40	9~51	22	
Oral contraceptives		10~50			8	
Aflatoxin	Limited	exposure	Limited	exposure	Importar	nt exposure
Other and emerging risk factors/cofactors	< 5				< 5	

Incidence of HCC in Risk Groups

Subgroup	Incidence per Year (%)
All hepatitis B carriers > 40 yrs of age	0.2
Cirrhotic hepatitis B carriers	3-8
Hepatitis C cirrhosis	3-5
Stage 4 primary biliary cirrhosis	3-5
Alcoholic cirrhosis	?
Genetic hemochromatosis	?
Nonalcoholic steatohepatitis	?

Beasley RP, et al. Lancet. 1981;2:1129-1133. Koike K, et al. Oncology. 2002;62(suppl 1):29-37. Beasley RP. Hepatology. 1982;2(suppl):21S-26S. Fattovich G, et al. Gut. 1991;32:294-298. Manno M, et al. Gastroenterology. 2004;127:756-763. Hsu YS, et al. Hepatology. 2002;35:1522-1527. Fattovich G. J Hepatol 2003;39(suppl 1):S50-S58. Fattovich G, et al. Gastroenterology. 1997;112:463-472. Niederau C, et al. Hepatology. 1998;28:1687-1695. Niederau C, et al. N Engl J Med. 1996;334:1422-1427. Degos F, et al. Gut. 2000;47:131-136. Caballeria L, et al. Am J Gastroenterol. 2001;96:1160-1163.

Unsatisfactory Treatment Outcome for Advanced HCC Patients

Chen CH et al. Eur J Cancer 2006;42:2524-9.

Systemic Treatment for HCC Before 2000

- Cytotoxic agents: few are active.
- Combination chemotherapy: not suitable for most HCC patients.
- Biologic agents, such as <u>interferon</u>, <u>tamoxifen</u>, <u>somatostatin analog</u>: not successful.

Exploring Molecular Targeted Therapy for Cancer

Table 1. Current status of selected targeted agents in NSCLC

Agent	Туре	Targets	Phase
Bevacizumab	Ab	VEGF	FDA approved
VEGF trap	Fusion protein	VEGF	Phase II
PTK787/ZK222584 (Vatalanib)	TKI	VEGFR-1, VEGFR-2, PDGFR	Phase II
SU 11248 (Sunitinib)	TKI	VEGFR, PDGFR, Flt-3, c-kit	Phase II
BAY 43-9006 (Sorafenib)	TKI	VEGFR-2, PDGFR (and RAF*)	Phase III
ZD6474	TKI	VEGFR-2, VEGFR-3, EGFR	Phase III
Erlotinib	TKI	EGFR	EMEA and FDA approved
Gefitinib	TKI	EGFR	Phase III
Cetuximab	Ab	EGFR	Phase III
Trastuzumab	Ab	HER2	Phase II
HKI-272	TKI	EGFR, HER2	Phase II
CCI-779	Macrolide derivative	mTOR	Phase II
RAD001	Macrolide derivative	mTOR	Phase II
Bortezomib	boronic acid analogue	Proteasome	Phase II
AMG951	Portion of the native Apo2L/TRAIL	Death receptors DR4 and DR5	Phase Ib/II

Besse B et al. Ann Oncol 2007;18 Suppl 9:ix135

Complex Genetic Aberrations in HCC

Nearly every carcinogenic pathway is altered to some degree in HCC...

Growth factors and receptors

EGFR, HGFR, IGF axis, TGF-β family, FRGR

Intracellular signaling pathways

MAPK/MEK, PI3K/Akt/mTOR, Hedgehog, PKC, Wnt/β-Catenin

Cell cycle control

Cyclin A, Cyclin B1, Cyclin D1, Cyclin E

Oncogenes

Ras, Myc, Met, Aurora-A

• Tumor suppressors

p53, p16, p21, p27, Rb, E-Cadherin

Apoptosis

Fas/Fas ligand

• Extracellular matrix

MMPs, Integrins

Targeted Therapy for HCC Integration of Basic and Clinical Research

□ Better understanding the pathogenesis of HCC
 → better preclinical validation of the targets
 → develop new strategies or new drugs

- Clinical research
 - \rightarrow look for the molecular basis
 - \rightarrow design new strategies or new drugs

Anti-angiogenesis Therapy in Advanced HCC

- Mostly a hypervascular tumor
- Expression of pro-angiogenic factors (VEGF, FGF, MMP) in tumor and stromal cells
- Circulating angiogenic factors in patients with HCC

Anti-angiogenesis Therapy in Advanced HCC: thalidomide

- Possible mechanisms:
 - Inhibitor of VEGF- and bFGF-induced angiogenesis
 - Inhibitor of TNF- α synthesis
 - Free radical production
 - Immune modulation

A Clinical Trial of Thalidomide in Advanced HCC

- 53 Men, 15 women, median age 62.1 years
- HBsAg (+): 37 (54.4%), anti-HCV (+): 24 (35.3%)
- Thalidomide 100 mg b.i.d, p.o. dose escalation in 100-mg steps
- One CR and 3 PR, RR = 6.3%
 Another 6 patients had > 50% reduction of α-FP
 20 SD, 39 PD
- All response occurred with thalidomide 200-300 mg/day

Hsu C et al. Oncology 2003;65:242-9.

At the start of thalidomide treatment

At the documentation of response

At the start of thalidomide treatment

At the documentation of response

Hsu C et al. Oncology 2003;65:242-9.

В

Phase II Trials of Anti-angiogenic Agents in Advanced HCC

Author	Patients Evaluable	Treatment	Response Rate	Main Toxicity
Hsu	63	Thalidomide 200- 600 mg/d	6.3 % 1CR, 3PR, 20SD	Lethargy
Patt	32	Thalidomide 400- 1,200 mg/d	3.1 % 1PR, 1MR, 10SD	Somnolence
Lin	26	Thalidomide 200- 600 mg/d	3.8 % 1CR, 2SD	Somnolence
Chiou	42	Thalidomide 50- 200 mg/d	5.0 % 2PR, 9SD	Skin, Dizziness
Schwartz	46	Bevacizumab 5 or 10 mg/kg/2w	13.0 % 6PR, 30SD	Bleeding
Abou-Alfa	137	Sorafenib 400 mg bid	2.2 % 3PR, 8MR, 46SD	Lethargy
Faivre	37	Sunitinib 50 mg/d x 4w	2.7 % 1PR, 13SD	Bleeding
Raoul	45	Brivanib 800 mg/d	11.1 % 5PR, 16SD	Fatigue

Hsu C et al. Oncology 2003;65:242-9. Lin AY et al. Cancer 2005;103:119-25. Abou-Alfa GK et al. J Clin Oncol 2006:24;4293-300 Faivre S et al. Lancet Oncol 2009:10;794-800. Patt YZ et al. Cancer 2005;103:749-55. Schwartz JD et al. J Clin Oncol 2008:26;2992-8. Chiou HE et al. World J Gastroenterol 2006;12:6955-60. Raoul L et al. J Clin Oncol 27:15s, 2009 (abstr 4577)

Sorafenib Targets Both Tumor-Cell Proliferation and Angiogenesis

Wilhelm S et al. *Cancer Res* 2004;64:7099-109.

Study Schema of SHARP and AP Studies

Phase III sorafenib studies of Advanced HCC: SHARP Vs. Asia-Pacific Study

	SHARP Study		Asia-Pacific Study		Study	
	Sorafenib (N=299)	Placebo (N=303)	Hazard Ratio (95%CI)	Sorafenib (N=150)	Placebo (N=76)	Hazard Ratio (95%CI)
Overall survival (M)			0.69 (0.55-0.87)			0.68 (0.50-0.93)
Median	10.7	7.9		6.5	4.2	
Time to progression (M)			0.58 (0.45-0.74)			0.57 (0.42-0.79)
Median	5.5	2.8		2.8	1.4	
Level of response (%)						
CR+PR	0+2	0+1		0+3	0+1	
SD	71	67		54	28	
Disease control rate (%)	43	32		35	16	

Llovet JM et al. *N Engl J Med* 2008;359:378-90. Cheng AL et al. *Lancet Oncol* 2009;10:25-34.

HCC Treatment Schedule

Llovet JM et al. Hepatology 2008;48:1312-27.

Molecular Targeted Therapy for HCC

- Anti-angiogenesis
- EGFR tyrosine kinase inhibitors
- Combination of anti-angiogenesis and chemotherapy (conventional or metronomic)
- Novel targets and combination of targeted agents

Phase II Trials of EGFR Inhibitors in HCC

Author	Pts	Treatment	Response rate	Toxicity
Philip	38	Erlotinib 150mg/d	9 % 3PR, 12SD	Skin Diarrhea
Thomas	40	Erlotinib 150 mg/d	0 % 17SD	GI, Skin Liver
Vergote	17	Gefitinib 500 mg/d	0 % 5SD	Diarrhea N/V
O'Dwyer	31	Gefitinib 250 mg/d	3.2 % 1PR, 7SD	Diarrhea BM, Skin
Gruenwald	15	Cetuximab 400mg/m ² → 250mg/m ²	0 % 2SD	Skin
Zhu	30	Cetuximab 400mg/m ² → 250mg/m ²	0 % 5SD	Skin Diarrhea
Ramanathan	40	Lapatinib 1500 mg/d	5 % 2PR, 13SD	Fatigue

Philip PA et al. J Clin Oncol. 2005;23(27):6657-63.1Vergote IB et al. Proc Am Soc Clin Oncol 2005 (Abstr 31620Gruenwald V et al. Proc Am Soc Clin Oncol 2006(Abstr 14079)2Ramanathan RK, et al. Cancer Chemother Pharmacol 2009:64;777-83.

Thomas MB et al. Cancer 2007:110;1059-66. O'Dwyer et al. Proc Am Soc Clin Oncol 2006 (Abstr 4143) Zhu AX et al. Cancer 2007:110;581-9.

Further Improvement of Anti-angiogenesis Approach

Breast cancer

Avastin (15mg/kg)

Avastin (15mg/kg) Capecitabine

NSCLC

Carbo/Taxol

↑response; no survival benefit

↑survival

Metronomic Chemotherapy

MTD pulsatile chemotherapy (every 3 weeks)

Metronomic chemotherapy - lower dose on a daily basis

Kerbel RS et al. Nature Reviews Cancer 2004;4:423-36.

Combination of Metronomic Chemotherapy with Anti-angiogenic Agents – NTUH clinical trials

- Xeloda + Avastin (XA)
- UFUR + Thalidomide (UT)
- UFUR + Sorafenib (US)

Oral 5-FU Preparations for Advanced HCC

	Capecitabine	UFT
Patient No.	37	28
Dosage	1000 mg/m², BID, d1-14/21 days	400 mg, BID Continuously
Efficacy		
RR (%)	11	18
SD (%)	11	Not reported
Toxicity		
Grade ¾	PLT↓ (8%)	0
All grades	HFS, WBC \downarrow	GI

Patt YZ et al. *Cancer* 2004;101:578-86. Ishikawa T et al. *J Gastroenterol Hepatol* 2001;16:452-9.

Patient Characteristics at Baseline

	ХА	UT	US
Patients No	45	43	53
Median age	54	55	47
Male	89%	95%	89%
KPS <90	20%	24%	25%
HCV	18%	16%	25%
$AFP \geqq 400$	71%	71%	47%
$CLIP \geqq 4$	24%	37%	9%
Prior local tx	24%	72%	47%

Efficacy and Adverse Effects

	XA	UT	US
Dosage	X: 800 mg/m ² , BID, d1-14 A: 7.5 mg/kg, d1, q21d	U: 125 mg/m ² , BID T: 100 mg, BID	U: 125 mg/m ² , BID S: 400 mg, BID
Efficacy			
CR+PR	9%	9%	6%
SD	43%	23%	51%
Survival (m)			
OS	5.9	4.6	7.4
PFS	2.7	1.9	3.7
Toxicity			
Grade 3/4	↑ AST (16%)	Unremarkable	Fatigue (15%)
All grades	Skin, GI, Hematology	Somnolence	Skin, GI, Hematology

Approved Targeted Molecular Therapies With Possible Efficacy in HCC

- Dasatinib: CML
- Bevacizumab: breast cancer, NSCLC, CRC
- Erlotinib: NSCLC, pancreatic cancer
- Sunitinib: RCC, GIST
- Lapatinib: breast cancer
- Bortezomib: myeloma, mantle cell lymphoma
- Sorafenib: RCC, HCC
- Temsirolimus: RCC

Exploring Molecular Targets for HCC (I)

Tumor vs. Non-tumor with cDNA Microarray

Author	Differentially- Expressed Genes	Consistent Genes In ≧ 2 Studies
Okabe	335	Cyclin G1, cdc28 protein kinase 1, MMP 11, Forkhead box M1, MAPK3 (Erk1), CD34, Leukemia-associated phosphoprotein p18
Xu	2,253	Cyclin G1, cdc28 protein kinase 1, MAPK3 (Erk1)
Chen	1,640	Forkhead box M1, CD34, Leukemia-associated phosphoprotein p18
Delpuech	44	Cyclin G1, cdc28 protein kinase 2, MMP 14
Okabe H et al. <i>Cancer Res</i> 2001;61:2129-37. Chen X et al. <i>Mol Biol Cell</i> 2002;13:1929-39.		Xu XR et al. <i>PNAS</i> 2001;98:15089-94. Delpuech O et al. <i>Oncogene</i> 2002;21:2926-37.

Exploring Molecular Targets for HCC (II)

Viral Proteins and Signal Transduction Pathways

Exploring Novel Targeting Agents and Combination Strategies

Aurora kinase inhibitors, IGFR inhibitors, MEK inhibitors, m-TOR inhibitors, PI3K inhibitors, PDK inhibitors, HDAC inhibitors, proteosome inhibitors, multi-target inhibitors, anti-DR5 antibody.....

Combined (EGFR + Src) inhibition Combined (Raf + MEK) inhibition Combined (proteosome + PI3K) inhibition

.....

Summary and Perspective

- 1. Single-agent antiangiogenesis therapy has modest activity (2-13% RR).
- 2. Sorafenib has become the reference drug.
- 3. Combination of anti-angiogenesis with metronomic chemotherapy appears useful.
- 4. EGFR TK inhibitor, erlotinib, has modest activity (0-9% RR).
- 5. Novel targets and combination of targeted agents are under investigation.